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Viscoelastic phase separation is characterized by the formation of a transient gel upon phase separation. A
transient gel state is widely observed in complex fluids including polymer solutions, colloidal suspensions, and
protein solutions, but its physical description is quite difficult due to its intrinsically nonequilibrium nature. We
have modeled this transient gel state using a type of Brownian dynamics simulation in which coarse-grained
particles interacting with a Lennard-Jones potential are connected by elastic springs, which can be discon-
nected with the probability controlled by the ratio of the stored elastic energy to the thermal energy. The
simulations well reproduce pattern evolution in a transient gel of a polymer solution. Our simulations indicate
that domain morphology is controlled by two key physical factors: (i) the ratio between the nucleation and
growth rates of domains of the less viscoelastic phase and (ii) the fragility of the transient gel.
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I. INTRODUCTION

Viscoelastic phase separation (VPS) is a type of phase
separation observed in a mixture of slow and fast compo-
nents [1-7]. One of the most remarkable features of VPS is
networklike pattern formation of the more viscoelastic phase
even if it is a minority phase. VPS proceeds as follows: (i)
transient gel formation just after the temperature quench, (ii)
selective nucleation of the solvent-rich phase in the transient
gel after some incubation period, even though this phase is a
majority phase, (iii) gel-like volume shrinking of the
polymer-rich phase, (iv) transient formation of a networklike
structure, and (v) phase inversion and pattern relaxation to a
droplet morphology in the late stage. We proposed that VPS
may be universally observed for “dynamically asymmetric
mixtures,” such as polymer solutions [1-3], mixtures of
components having different T, [8], colloidal dispersions [7],
microemulsions [9], and protein solutions [10].

For VPS, many concepts, such as self-similarity and the
resulting dynamical scaling law, which are useful for predict-
ing the domain morphology of normal phase separation, can-
not be applied. Since the late-stage phase-separation process
of VPS is a result of complex nonlinear couplings among
concentration, stress, and velocity fields, it is quite difficult
to predict the pattern evolution of VPS analytically. Thus,
numerical simulations have played a crucial role in the un-
derstanding of the physical mechanisms behind the phenom-
ena. So far numerical simulations based on a two-fluid model
[11-17], a concentration-dependent mobility [18,19], and
molecular dynamics [20,21] have been performed. However,
the most difficult theoretical problem arises from the fact that
the transient gel formed just after the temperature quench is
intrinsically in a nonequilibrium state. We need a constitutive
equation describing the transient gel state, but there are no
theories for the rheological behavior of a system in an un-
stable state of a mixture. We recently proposed a specific
form of the constitutive equation for the transient gel state,
focusing on the role of the bulk stress stemming from the
connectivity of the network [4,5]. We introduced a step func-
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tion into the bulk modulus to express the fact that the con-
nectivity suppresses the diffusion, but if the connectivity is
lost by the breakup of bonds the bulk modulus disappears.
Numerical simulations based on this model [12,13] capture
some essential features of the pattern evolution and demon-
strate the importance of the role of the bulk stress, i.e., the
connectivity of the transient gel. However, the highly coarse-
grained description does not tell us about the elementary
process of the coarsening of the transient gel. Here we pro-
pose another type of coarse-grained simulation, namely, we
express the transient gel state by coarse-grained Brownian
particles connected by disconnectable springs. In this paper
we will seek physical factors controlling the network mor-
phology of VPS on the basis of a disconnectable spring
model.

II. COARSE-GRAINING DESCRIPTION OF A TRANSIENT
GEL

We have recently reported that aggregating colloidal par-
ticles form a chainlike structure with the help of interparticle
hydrodynamic interaction, and further form a network struc-
ture [5,22]. This network structure can be regarded as a tran-
sient gel, which plays a key role in VPS [4,5]. Here, we
consider the elementary process of spontaneous destruction
of a transient gel state under self-generated mechanical
stress. In the following, we coarse-grain a chainlike aggre-
gate of colloidal particles and express it as a disconnectable
spring.

Let us consider a one-dimensional chain consisting of N
particles, which are under tension [see Fig. 1(a)]. We assume
that particles are interacting with each other via a harmonic
potential U,(r)=[-€,+«,(r—b)*/2]0(r.~r), where €, b,
and «, are the strength of the potential, the natural length of
the harmonic interaction, and the spring constant, respec-
tively. This potential is set to be zero for r>r,, where r,
=\2¢,/ k,+b. Here, the suffix p indicates a physical value
related to the particle forming the chain [see the small par-
ticle in Fig. 1(a)]. Figure 1(b) shows the breakup process of
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FIG. 1. (Color online) (a) Schematic figure of a network struc-
ture composed of colloidal particles. In our simulation method, this
network consisting of small particles is approximated by pseudopar-
ticles (dashed circles) connected by disconnectable springs. (b) An
elementary process of disconnection of a particle chain simulated
by Brownian dynamics simulation of Lennard-Jones particles. Ini-
tially particles are connected to form a chain. The disconnection
process of this chain is simulated by solving the equation of motion
4 1=l ) U =P+ 80, wih  (@(0): ()
=2T{,8,;0(t—t")I, where {, is the friction constant. As shown
above, the particle chain is eventually disconnected by thermal
fluctuations.

a thermally fluctuating chain composed of particles, which is
simulated by Brownian dynamics simulation. The chain is
fluctuating due to thermal noise; thus, it is similar to a ther-
mally fluctuating polymer chain whose ends are stretched.
Unlike a polymer where monomers are permanently con-
nected by covalent bonds, however, our chain has a finite
disconnection probability and thus is eventually discon-
nected under the action of stress. The disconnection is irre-
versible and thus disconnected chains never reconnect again.
The breakup process is probabilistic and can be regarded as a
thermally activated process.

Next we estimate the disconnection rate of the above
chain. If we consider only the interaction between nearest-
neighbor particles, the chain can be described by a bead-
spring model of a flexible polymer. Its free energy is given
by [23]

=22 [[aia- vyt 7 [ aism i
N, 2

. . ] .
—T\- (fduuf(ﬁ)—@)—T,u(fduf(ﬁ)—l).
(1)

Here f(u) is the distribution function of the relative vector
between neighboring particles, u(=r;,,-r;), and [ is the end-
to-end vector of the chain, which is expressed as I= FNP—FO. T
is the temperature and the Boltzmann constant kg is set to

unity. The first and second terms of Eq. (1) represent the
elastic energy of springs and the entropy of chain conforma-

tion, respectively. u and N are the Lagrange multipliers,
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which are introduced to impose the following normalization
conditions: [du f(u)=1 and [du ﬁf(zf):i/(pr), respec-
tively. Minimization of Eq. (1) in terms of f(u) (i.e.,
SFI8f=0) leads to f(i,\,k,)=exp[\-i—(x,/2T)(|i
—b)z]/Z()t,K ). Z():,Kp) is a normalization factor given by

Z(\k,) = f dﬁexp(i i ;—‘;qm —b)z)

2@T b T
~ 4w/ le“zlz"l’(— sinh(Ab) + — cosh()\b)).
K, A Kp
()

From the relation (d/ 0):) InZ=1I/ (N,b), we obtain

[

N b(zmpr — 1/\b)sinh(Ab) + (1 + T°N*/ k;b*)cosh(\b)
o sinh(Ab) + (TN/k,b)cosh(\b)

3)

The averaged elastic energy of a spring is obtained as

J
E=-Tk,~— InZ
Kp
_ T(1+T\/k,)sinh(\b) + (3TN k,b + T°N*/i;b)cosh(\b)

2 sinh(\b) + (T\/k,b)cosh(\b)

(4)

Since the extensional stress acts on each particle due to
the chain entropy and the spring elasticity, the average inter-
particle distance 7 becomes larger than the most probable
separation r=>b. Note that N7 gives the contour length of the
chain; thus, [<N, 7. We assume that the excess energy of the
interparticle interaction is almost equal to the elastic energy
stored by each spring [see Eq. (5)]. When the average inter-
particle separation 7 is larger than r., the chainlike configu-
ration becomes unstable and the chain is eventually discon-
nected by thermal fluctuations. Since, on the other hand,
such a configuration is metastable for r<r,, a certain energy
barrier has to be overcome when the chain is disconnected.
Assuming that all springs are equally stretched, this energy
barrier height is estimated as AE=[U,(r.)-U,(b)]-E(l)
=T In N, Using this, the disconnection rate can be approxi-
mated as p(l):ta1 exp[—AE(l)/T], where 1, is the character-
istic time scale of the chain fluctuations and to={,/ 7 k,,. i
corresponds to the attempt frequency for disconnection. Here
the last term of AE occurs because the attempt frequency
should be multiplied N, times for a chain composed of N,
springs.

T\ gives the force acting on both chain ends. Since / and
E are monotonic odd and even functions of \, respectively, E
should be an even function of /. This means the leading order
term of / upon expansion is /2. Thus, AE(/) can be approxi-
mated as
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AE(]) =~ Ey- %Kﬂ, (5)
where Ey=€,—(T/2)(k,b*+3T)/(k,b*+T)-TInN, and «
=(6k, /NZ)T2(5/3K2b4+TK b2+ T2)/(K2b4/3+2TK P41,
The contrrbutlon of hrgher order terms becomes 31gn1ﬁcant
for larger «, b2/ T, while the above derivation of Eq. (2) is not
valid for smaller Kp b*/T. Thus, this description is valid for
the intermediate range of «, b2/ T. We confirm numerically
that for 2 < k,b*/T=< 10 the numerrcal accuracy of Eq. (2) is
within 10% even for strongly stretched springs (I~=~N,b).
Next we describe the coarse-grained model of a transient
gel based on the above-described disconnectable springs. In
the above, we consider the disconnection process of a chain
of particles. Here we coarse-grain a network by replacing
chains of small particles by disconnectable springs. We treat

the cross-linking points {R;} [large dashed circles in Fig.
1(b)] as particles. We assume for simplicity that the physical
parameters such as € and ¢, which will be defined below, are
independent of those of the small particles. This coarse-
graining model, which has no microscopic information on
colloidal particles, can now be applied to transient gel states
of various types of dynamically asymmetric mixtures includ-
ing not only colloidal suspensions but also polymer solutions
and protein solutions.

III. NUMERICAL SIMULATION METHOD

The time evolution of this network composed of particles
connected by disconnectable springs is simulated by a
Brownian dynamics simulation method. We treat motion of
coarse-grained particles immersed in a solvent in the over-
damped limit. Thus, effects of the solvent are incorporated
by a hydrodynamic drag force and a random Brownian force
acting on the particles. The equation of motion for particle i
is then given by

Ulot{lsi} + gi ’ (6)

S
dr (9_)

i
where 13,. is the position of coarse-grained particle i and ¢
represents the friction constant. é,» is the thermal noise force,
which satisfies the fluctuation-dissipation theorem (§i>=0
and (&(1): (1) =2T¢8;0(-1")1.

We assume that the interaction between a pair of particles

is composed of not only a Lennard-Jones (LJ) interaction,
but also a spring interaction

U tot{]_éi} =U LJ{I_éi} +U sp{ﬁi}' (7)

Here we employ the 12-6 type of LJ potential between all
pairs of particles:

R o 12 o 6
ULJ{Ri}=4€2 ( O ) -\ == . (8)
i#) [\ IR, =R IR - R/

where € and o represent the strength and length scale of the
interaction, respectively.
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A key feature of our model is the introduction of Uy, to
express the transient gel state formed right after a tempera-
ture quench, which is a percolated network of the slower
components formed by attractive interactions [4,5,9,22,24].
To represent this transient gel state in a coarse-grained man-
ner, we initially put the particles on a triangular lattice,
whose interlattice length is [, and introduce the spring (har-
monic interaction) between the nearest six particles for each

particle as Uj {R}—2K21(¢l)|Ri—I$j|2 [25]. « is the spring
constant (see Sec. II) and X/ ., represents the summation

over nearest-neighbor pairs. We can say that the particles
represent the cross-linking points of a transient gel. Note that
the natural length of the spring is set to 0, which indicates
that the transient gel at the initial state has already stored the
elastic energy Kl(z)/ 2 per spring. This initially stored elastic
energy plays a key role in the selection of patterns, as will be
shown later.

Because the network is “transient” and not permanent, a
spring should be broken faster when stronger tension acts on
it. As described above, the disconnection rate of a spring,
p(0), is given by p(l)= t_l “AEDIT AE(1)=Ey—kI*/2 [see Eq.
(5)] is the activation energy for the disconnection of a spring
and is a decreasing function of the length /. The more the
spring is stretched, the more easily it is broken. Note that the
broken spring is never reconnected again. This irreversible
disconnection of the spring does not represent that of the
covalent bond of polymers, but represents the breakup of the
interaction network composed of polymers or colloids
[5,7,22]. When all springs are still connected, the particles
only move around their initial positions randomly by thermal
noise. However, once a spring is disconnected, the mechani-
cal force balance around it is broken, which induces motion
of the network. As a result, the neighboring springs are
stretched and more easily disconnected. This represents the
stress concentration and the resulting breakup of the transient
gel. Here we discuss the role of the connectivity of springs.
All the work stored in the spring can be used to lower the
barrier to escape from the potential well only when the
springs are connected with each other. Once the spring is
disconnected, the stored energy is dissipated against solvent
drag. Note that the dissipation plays an important role only
when a spring is irreversibly disconnected. Thus, we can say
that the connectivity is a key factor determining whether the
stored energy can be used to lower the barrier or not in our
model.

In our model, the interfacial tension originates only from
the LJ interaction. It makes droplets circular in the very late
stage, where the elastic stress does not play any roles. In the
transient gel regime, on the other hand, the viscoelastic stress
(spring interaction) overwhelms the interfacial tension (LJ
interaction). Thus, the interfacial tension does not play an
important role in the pattern selection there. In a polymer
solution, however, the final disruption of a string occurs due
to the Rayleigh instability. In our model, the switching from
the elastic-stress-dominated to the interfacial-tension-
dominated regime occurs discontinuously, reflecting the dis-
crete nature of the disconnection of a spring. Thus, our
model cannot describe the hydrodynamic breakup process of
a string due to the Rayleigh instability. However, this itself
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FIG. 2. Phase-separation processes of critical polymer solutions
(polystyrene—diethyl malonate) observed by phase-contrast micros-
copy [26]. Molecular weight M, critical concentration ¢,, critical
temperature T, and quenched temperature 7, employed in the ex-
periments are (a) M,,=8.0X 10°, ¢,=4.98 wt %, T,=294.0 K, and
T,=284.0 K, (b) M,=85%105%, ¢,=1.2 wt%, T.=301.1 K, and
T,=297.0 K, respectively.

does not affect the pattern evolution so seriously [compare
Figs. 2(a) and 3(a)]. Our model can, on the other hand, well
describe the breakup process of a network made of colloidal
particles or dense polymer droplets. Note that in these sys-
tems the string size is comparable to the particle size and
thus the coarse-graining hydrodynamic description is not ap-
plied; the Rayleigh instability does not play any important
role in this case. We emphasize that the characteristics of
pattern evolution in viscoelastic phase separation originate
from the self-induced elastic stress and its release accompa-
nying the dissipation: Our model mimics the former by a
spring and the latter by its disconnection.

Hereafter, we scale the length, energy, and time by [,
Kl%/ 2, and t,, respectively. The scaled value of a variable X

is denoted as X. We also scale the frictional constant { as Z
={/(kty). We solve Eq. (6) by using the explicit Euler
method. We employed ¢, as the time increment; and thus the
disconnection process is performed for every spring per time
step (#y). The disconnection of springs is a thermal activation
process. Thus we assume that a spring is disconnected if a
randomus generated number, which is uniformly distributed
between 0 and 1, is smaller than e 2EW/T For all the follow-
ing simulations, we employ the parameters of the LJ poten-
tial as €=4 and =0.25. We solve Eq. (6) for 2500 particles

A
600 4000 6800

200 400 800 1600

FIG. 3. Temperature (D) dependence of pattern evolution pro-
cesses of a network of disconnectable springs. 7=(a) 2.1 and (b)

3.0. The other parameters used are EO=25 and {=100. Numbers
below pictures represent the scaled time 7.
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using periodic boundary conditions in a two-dimensional
space {0,50} X {0,253}.

IV. RESULTS AND DISCUSSIONS

A. Basic features of pattern evolution of a network
of disconnectable springs

First we show two types of pattern formation processes of
a polymer solution experimentally observed with phase-
contrast microscopy in Fig. 2. The samples used in the ex-
periments are critical binary mixtures of polystyrene and di-
ethyl malonate. The molecular weights of polystyrene in
Figs. 2(a) and 2(b) are M,,=8.0 X 10° and 8.5 X 10, respec-
tively. The darker phase is the polymer-rich phase. Since the
phase diagram of a polymer solution is quite asymmetric, the
final equilibrium volume fraction of the polymer-rich phase
is rather small. Nevertheless, the polymer-rich phase tran-
siently forms a network structure during phase separation.
The pattern evolution is characteristic of VPS [4,5,8].

Next we compare our simulation results with the above
experimental results. Figures 3(a) and 3(b) show two ex-
amples of pattern evolution of VPS, which look similar to
the pattern evolution in Figs. 2(a) and 2(b), respectively.
Here particles and springs are drawn by black dots and lines,
respectively. Note that the springs are more easily discon-

nected at a higher temperature T [see Fig. 3(b)] than at a
lower one [see Fig. 3(a)]. If we regard the black and white
regions in Fig. 3 as the more and less viscoelastic phases,
respectively, the pattern evolution simulated by our discon-
nectable spring model reproduces almost all the essential fea-
tures of VPS. This suggests that our simple model captures
the essential features of VPS [4]. Hereafter we study the hole
formation and the growth of holes more quantitatively.
Figure 4 shows the temporal change of the average length

() (a) and the length dispersion & (b) of the connected

springs for simulations with different EO. For all the cases, (1)
monotonically decreases with time, which indicates that the
stored elastic energy is released by the disconnection of

springs. Their final value ({I)=~0.25) corresponds to &. For
smaller EO, (Iy decreases faster. This means that the springs

are more easily broken for smaller EO. Unlike (7), Sl in-
creases in the early stage but then decreases later. Since the
dispersion reflects the inhomogeneity of the elastic force, we
can say that it is a measure of the strength of the mechanical

force created in the network. Thus, the behavior of & in Fig.
4(b) is quite consistent with the fact that the strength of the
mechanical force exhibits a peak at a certain time in our
previous simulations based on a two-fluid model [12,13].

In the early stage, most of the springs are still connected
under thermal noise forces and their lengths are about /. The
probability that a spring is still connected at a time ¢ is ap-
proximated as (1—e 2007y Then the characteristic time
of the disconnection of a spring can be chosen to be the time
t, at which this probability becomes equal to 1—¢~!. Since
e AEW/T< 1 in our simulations, this time 7, is approximated
as t,~t,e®"!, where a=AE(l,)/T. This t, can be regarded as

041509-4



SIMPLE TOOLS FOR COMPLEX PHENOMENA:...

102 103 104

102 103 104
t/t,
c)
( LoF o oo 1 0.3
= 0.8} € 3 oy
/\,-}0.6“ ® £, =25 1 02/-\‘\
L:, mE =20 Z
=041 Af _is 1 0.1 O:
02}
0.0 . . 0.0
0= 102 10" 10° 10" 102
/1,

FIG. 4. (Color online) Temporal change in Y Iy (a) and &I/,
(b) of the connected springs for different EO=25, 20, and 15. T
=1.8 and 7=102 (c) Temporal change in (/) and & after the scaling.

the characteristic incubation time for hole formation, which
can be regarded as nucleation of a droplet. We confirm that

the curves of (I) and &l in Figs. 4(a) and 4(b) can be col-
lapsed on single master curves, if the elapsed time is scaled
by ¢,, at which & has a peak, as shown in Fig. 4(c). This
scaling suggests that 7,%7,. Since the mechanical force be-
comes strongest at f,, , can be regarded as the time when
droplets of the less viscoelastic phase strongly interact with
each other and thus the network is maximally deformed.

B. Dependence of pattern evolution on «

Figure 5 shows how the domain morphology of VPS at 7,
depends upon the parameter «. Since t;l controls the hole
formation rate of the less viscoelastic phase and t,~ tye® !,
we can see from Fig. 5 how the hole formation rate affects
the characteristics of the domain pattern. Although the tem-
poral change of {1y can be scaled by 1, (or 1,) [see Fig. 4(c)],
the characteristics of the pattern do depend upon ¢, crucially.
Figure 5 clearly indicates that the pattern at 7, is coarser and
more inhomogeneous for larger «, whereas it is finer and
more homogeneous for smaller «. For a small hole formation
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FIG. 5. The « dependence of domain patterns of VPS at ¢,; «
=(a) 8.3, (b) 10, and (c) 12. The other parameters are T=1.8 and
Z=102. The figures in the bottom row show the spatial distribution
of forces acting on each spring. The brighter and darker springs are
longer and shorter than [, respectively. The brightness of the spring
whose length is [ is set to be the same as that of the background
(i.e., the solvent-rich phase).

rate (large ¢, or large «), both position and time, at which
each hole is formed, are randomly distributed, which makes
the pattern at 7, coarse and inhomogeneous. For small «, on
the other hand, the hole formation rate is large and thus most
of the holes are formed almost at the same time in the early
stage. Thus, the pattern at 7, becomes fine and homogeneous
for smaller a.

The images in the bottom row in Fig. 5 show the spatial
distribution of the forces acting on springs. Each picture in
the bottom row corresponds to that in the top row in the
same column. The brightness of springs reflects the spring
length; the brighter and darker springs are longer and shorter
than [, respectively. From Fig. 5, we can see that the fibril-
like parts of the network are stretched and the bulk parts of
the more viscoelastic phase, which are composed of con-
nected springs, shrink to reduce the stored elastic energy.
Therefore, it is expected that fibril-like parts are easily dis-
connected. We also note that the stress distribution becomes
more inhomogeneous for larger «.

C. Dependence of pattern evolution on Z‘

Figure 6 shows the Z dependence of the characteristic do-
main pattern and the corresponding stress distribution for the

FIG. 6. The Zdependence of domain patterns of VPS at #, for
a=14 and T=1.8: {=10, 2X 102, and 3 X 10? for (a)—(c), respec-
tively. The figures in the bottom row show the spatial distribution of
forces acting on each spring.
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FIG. 7. (Color online) Dependence of the dispersion of the areas
of holes (nucleated droplets) AS? on t,/t, for different Z.

fixed a. The Zis a parameter controlling the motion of par-
ticles. Our simulations show that the pattern is coarser and

more inhomogeneous for smaller {, whereas it is finer and

more homogeneous for larger Z. In our model, the character-
istic time of the particle motion connected by a spring is
given by t,={/«k. Thus, t;l controls the growth speed of a
hole (i.e., the solvent-rich droplet). A simple physical consid-
eration leads us to a conclusion that one of the most impor-
tant factors controlling the domain morphology of VPS is the
ratio of the growth rate to the creation rate of droplets, ¢,/1,.
This conclusion is supported by Fig. 7, which shows the #, /¢,
dependence of the dispersion of the areas of holes AS?. AS?
is calculated as AS?=(5%),—(S)2. Here (X),=3.X;S,/2.S;
means the averaged value of X weighted by each area S,
which represents the area of the hole labeled i. We find the
relation AS?oct,/t,. Although the physical meanings of this
power law and the exponent are not clear now, this result
indicates that #,/t; is a key parameter controlling the mor-
phology of VPS. The stress distribution of springs is almost
the same as those of Fig. 5. In Fig. 6(a), we can see the
inhomogeneous stress distribution, which further suggests
the existence of spatial correlation in the stress field, which
will be discussed later.

D. Dependence of pattern evolution in 3

Next we discuss another physical factor controlling the
morphology. Using the hole formation rate t;l, the discon-
nection rate can be approximated as p(l)z(tn/e)‘leﬂ(?‘l),
where ﬂ=%Kl(2)/T (=1/T) is the scaled initially stored elastic
energy. Figure 8 shows the dependence of AE/T on [ sche-
matically. It indicates that the initially stored elastic energy
determines the decreasing rate of the activation energy for an
increase in the initial length of springs; note that the slope of
AE(l)/T at I, is given by =23 (see Fig. 8). The disconnection
probability of a spring whose length is 7=(1+1/8)"? is en-
hanced by a factor e. Thus, 1/ is a measure of how much a
spring can be elongated without disconnection. For a system
made of springs of smaller 3, a spring stores less elastic
energy in the initial state, and thus can be more stretched and
store more elastic energy before disconnection. On the other
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FIG. 8. The I dependence of AE/T (=a—B[(1/1y)>*-1]).

hand, for a system made of springs of larger (3. a spring
cannot be elongated so much and is easily broken. Thus we
can say the parameter S represents the fragility of the
springs.

Figure 9 shows the 8 dependence of domain morphology
of VPS with fixed 7,/t,. We can see that the morphology of
the droplets is rather circular for small 3, while it is rather
anisotropic for large B. For a fixed value of #,, which is the
case of Fig. 9, 872 can also be regarded as the width of the
distribution of p(l). For small B3, the disconnection probabil-

ity p(I) depends on 7 gradually, and thus springs of various
lengths can coexist. In other words, the disconnection pro-
cess is probabilistic. For large 3, on the other hand, the de-
pendence of p(l) on length [ is rather sharp and thus the
disconnection process is deterministic. In this sense, the
simulations of large and small 8 correspond to a fragile solid
and a viscoelastic fluid, respectively.

Figure 10 shows the 8 dependence of the shape of a drop-
let of the less viscoelastic phase and its stress distribution.
Initially we disconnect ten springs on a horizontal straight
line, which behaves as a nucleus of the less viscoelastic
phase. Since we used a larger value of a (=30) in these
simulations, the disconnection rate of springs is very small in
the matrix and thus we do not see any spontaneous discon-
nection events in the matrix during the simulation time. For
larger f3, the anisotropic growth of the nucleus is quite simi-
lar to that of fracture in an elastic solid [see Fig. 10(a)]. On
the other hand, it has a circular shape for smaller B [see Fig.
10(d)]. From the pictures in the bottom row, we can see that
the stress is more concentrated and localized for larger f3,
whereas it is more homogenized and delocalized for smaller

B.

FIG. 9. The B dependence of domain patterns of VPS at 7, for
=12 and {=10% B=0091, 1.5, and 3.6 for (a)—(c), respectively.
The figures in the bottom row show the spatial distribution of forces
acting on each spring.
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FIG. 10. Shape of a single growing hole (droplet) (top row) and
the force distribution around it (bottom row) for =30 and Z =10%
B=5,2,1,0.5 for (a)—(d). All the holes (droplets) have almost the
same area. As initial conditions, we disconnect ten springs along a
horizontal line. These initially broken springs can be regarded as an
anisotropic nucleus of crack.

Disconnection of a spring leads to the loss of the force
balance condition around it. Therefore, the neighboring
springs are more stretched and eventually disconnected. For
large f3, springs that are stretched larger than /; are necessar-
ily disconnected, while springs shorter than /; remain con-
nected. For this rather deterministic process, the disconnec-
tion process is similar to a crack propagation in the fracture
of solids. The springs at the edge of an anisotropic droplet,
where the mechanical stress is concentrated, are selectively
disconnected so as to release the elastic energy efficiently.
This makes the shape of a hole (or a droplet) more aniso-
tropic. Such patterns are indeed observed experimentally in
VPS, as will be reported elsewhere. For small 3, on the other
hand, the stretched springs are not disconnected easily and
cannot release the elastic energy at the front of a crack. Thus,
the droplet becomes rather isotropic and circular to satisfy
the force balance among the springs on the periphery.

E. Spatial correlation in hole formation

Next we discuss other interesting characteristics of pattern
formation in VPS. One-dimensional arrays of droplets are
often formed in the simulations [see Fig. 11(a)]. A similar
pattern is also often observed in experiments (see Fig. 2).
This indicates the presence of elastic coupling among holes
(i.e., droplets). Figure 11(b) schematically shows such an
array of nucleated solvent-rich droplets and the forces acting
on the shrinking transient gel. The formation of a droplet
array can be explained as follows. If two droplets are nucle-
ated close to each other at about the same time, the deforma-
tion field around them [see Fig. 11(b)], which is induced by
the shrinking of the more viscoelastic matrix phase, becomes
anisotropic. The stress is more concentrated at the edges of
the array of droplets. This helps creation of holes there [see
the hatched regions in Fig. 11(a)], and thus leads to a further
increase in the number of droplets in the array. The overall
domain shape of the array is approximated by an elongated
ellipsoidal droplet [see the ellipsoid of the broken line in Fig.
11(a)], if we neglect the thin bridges between droplets. Note
that the growth process of this ellipsoidal droplet resembles
the fracturelike growth of a nucleated droplet observed in
simulations of large B [see Fig. 9(c)].

F. How do the characteristics of the interaction potential
affect pattern evolution?

Finally, we discuss the relationship between the interac-
tion potential between the slower components of a mixture

PHYSICAL REVIEW E 72, 041509 (2005)

FIG. 11. (a) Arrays of nucleated droplets observed in the simu-
lation of 7,/t,=920, 8=0.56, and 7=5 X 103. (b) Schematic picture
of an array of nucleated droplets and the stress field in the shrinking
viscoelastic matrix phase.

and the resulting domain pattern of VPS. As shown in Sec.
11, a*and B are approximateg as a= e;—%—lnN —B and B
=(6€,/ 8)(ly/N,b)*, where €,=¢€,/T and 6=\2¢,/k,/b are
the scaled strength and width of the interaction potential be-
tween the particles composing springs, respectively. The « is
an increasing function of e;. As shown above, a represents
the amount of elastic energy that each spring can further
store before disconnection. This suggests that the domain
pattern becomes coarser and more inhomogeneous when the
interaction between particles (or molecules) of the slower
component in a mixture is strong. Since « decreases with
increasing N,, the domain pattern should be more inhomo-
geneous when the density of cross-linking points in the ini-
tial transient gel state is higher. 8 is the scaled elastic energy
stored by the initial spring and controls the fragility of the
spring. Therefore, the larger the elastic energy stored in the
initial network structure (i.e., the larger /,/N,b), the larger
the fragility becomes. The (3 is a decreasing function of the
width of the potential well, 8. Therefore, if the interparticle
potential is steeper, the fragility of springs should be larger
and the resulting domain pattern should become more aniso-
tropic. This suggests that we may intentionally control the
domain pattern of VPS by changing the interaction potential
between the components.

V. SUMMARY

In summary, we demonstrate that the essential features of
the pattern evolution of a transient gel (namely, VPS) can be
captured by a very simple toy model, in which Brownian
particles are connected by disconnectable springs. Our simu-
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lations very well reproduce the characteristics of pattern evo-
lution of VPS observed experimentally. This suggests that
the basic mechanism of the coarsening of the pattern in VPS
is the stress concentration and the resulting breakup of the
stretched network under thermal fluctuations. Our simula-
tions indicate that there are two key parameters controlling
the network morphology of VPS: the ratio of the growth rate
to the nucleation rate of a droplet of the less viscoelastic
phase (t,/t,) and the fragility of the network (8).

We also show how the characteristics of the interaction
potential of particles composing a network control the two
key parameters a and 8. When the interaction between par-
ticles is stronger, the resulting domain pattern becomes
coarser and more inhomogeneous. The density of the cross-
linking points in a transient network also affects the domain
morphology. The width of the potential and the conformation

PHYSICAL REVIEW E 72, 041509 (2005)

entropy of the chain affect the fragility, which controls the
anisotropy of droplets. This information may be of techno-
logical importance for the morphology control of a network
structure produced by VPS.

Finally, we mention that the phenomena simulated here
may have a close connection to those of fracture of vis-
coelastic matter [27,28].
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